top of page

Top DOE Mistakes




Because Design of experiments (DOEs) are so powerful, yet often costly in terms of time and resources, the experimenter should be extra careful in their design and development:


โš ๏ธ ๐— ๐—ถ๐˜€๐˜๐—ฎ๐—ธ๐—ฒ #๐Ÿญ: ๐—ก๐—ผ๐˜ ๐˜‚๐—ป๐—ฑ๐—ฒ๐—ฟ๐˜€๐˜๐—ฎ๐—ป๐—ฑ๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐˜€๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ.

โ€œ๐˜›๐˜ฉ๐˜ฆ๐˜ณ๐˜ฆ ๐˜ช๐˜ด ๐˜ฏ๐˜ฐ ๐˜ด๐˜ถ๐˜ฃ๐˜ด๐˜ต๐˜ช๐˜ต๐˜ถ๐˜ต๐˜ฆ ๐˜ง๐˜ฐ๐˜ณ ๐˜ฌ๐˜ฏ๐˜ฐ๐˜ธ๐˜ญ๐˜ฆ๐˜ฅ๐˜จ๐˜ฆ.โ€ - W. Edwards Deming.

All the statistics in the world are no substitute for a basic understanding of the physics, chemistry, biology, manufacturing, technology, etc. that is the subject of the experiment. Research, interview SMEs, and learn as much as you can about the subject ๐˜ฃ๐˜ฆ๐˜ง๐˜ฐ๐˜ณ๐˜ฆ you plan the DOE.

โš ๏ธ ๐— ๐—ถ๐˜€๐˜๐—ฎ๐—ธ๐—ฒ #๐Ÿฎ: ๐—ฅ๐—ฒ-๐—ถ๐—ป๐˜ƒ๐—ฒ๐—ป๐˜๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐˜„๐—ต๐—ฒ๐—ฒ๐—น.

โ€œ๐˜๐˜ต ๐˜ช๐˜ด ๐˜ฃ๐˜ฆ๐˜ต๐˜ต๐˜ฆ๐˜ณ ๐˜ต๐˜ฐ ๐˜ญ๐˜ฆ๐˜ข๐˜ณ๐˜ฏ ๐˜ง๐˜ณ๐˜ฐ๐˜ฎ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฎ๐˜ช๐˜ด๐˜ต๐˜ข๐˜ฌ๐˜ฆ๐˜ด ๐˜ฐ๐˜ง ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ๐˜ด ๐˜ต๐˜ฉ๐˜ข๐˜ฏ ๐˜ต๐˜ฐ ๐˜ธ๐˜ข๐˜ช๐˜ต ๐˜ถ๐˜ฏ๐˜ต๐˜ช๐˜ญ ๐˜บ๐˜ฐ๐˜ถ ๐˜ฎ๐˜ข๐˜ฌ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ๐˜ฎ ๐˜บ๐˜ฐ๐˜ถ๐˜ณ๐˜ด๐˜ฆ๐˜ญ๐˜ง.โ€

Very likely someone has run a similar experiment in the past: what did they find? What factors were most important? What errors did they make? Treat these as potentially valuable contributions to your own DOE.

โš ๏ธ ๐— ๐—ถ๐˜€๐˜๐—ฎ๐—ธ๐—ฒ #๐Ÿฏ: ๐—ข๐—บ๐—ถ๐˜๐˜๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—–๐—ฎ๐˜‚๐˜€๐—ฒ-๐—ฎ๐—ป๐—ฑ-๐—˜๐—ณ๐—ณ๐—ฒ๐—ฐ๐˜ ๐—ฑ๐—ถ๐—ฎ๐—ด๐—ฟ๐—ฎ๐—บ.

Root cause analysis brainstorming tools such as Cause-and-Effect diagrams, Y-to-X, Fault-Tree Analysis, etc. will help you consider a larger universe of possible inputs and assist in separating โ€œthe vital few from the trivial manyโ€.

โš ๏ธ ๐— ๐—ถ๐˜€๐˜๐—ฎ๐—ธ๐—ฒ #๐Ÿฐ: ๐—–๐—ต๐—ผ๐—ผ๐˜€๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐˜„๐—ฟ๐—ผ๐—ป๐—ด ๐—ถ๐—ป๐—ฝ๐˜‚๐˜ ๐—น๐—ฒ๐˜ƒ๐—ฒ๐—น๐˜€.

Be bold! Too often the results will not show significance โ€“ not because an input is not a factor - but because the ๐˜ณ๐˜ข๐˜ฏ๐˜จ๐˜ฆ of input levels used was ๐˜ต๐˜ฐ๐˜ฐ ๐˜ด๐˜ฎ๐˜ข๐˜ญ๐˜ญ.

โš ๏ธ ๐— ๐—ถ๐˜€๐˜๐—ฎ๐—ธ๐—ฒ #๐Ÿฑ: ๐—ฆ๐—ธ๐—ถ๐—ฝ๐—ฝ๐—ถ๐—ป๐—ด ๐—ฐ๐—ฒ๐—ป๐˜๐—ฒ๐—ฟ ๐—ฝ๐—ผ๐—ถ๐—ป๐˜ ๐—ฟ๐˜‚๐—ป๐˜€.


The most underrated of all runs, center points are crucial in detecting process drift, curvature, and giving us the extra degrees of freedom to calculate model residual errors. A must!

โš ๏ธ ๐— ๐—ถ๐˜€๐˜๐—ฎ๐—ธ๐—ฒ #๐Ÿฒ: ๐—ก๐—ผ๐˜ ๐—ธ๐—ป๐—ผ๐˜„๐—ถ๐—ป๐—ด ๐˜๐—ต๐—ฒ ๐—˜๐—ณ๐—ณ๐—ฒ๐—ฐ๐˜ ๐˜€๐—ถ๐˜‡๐—ฒ ๐˜†๐—ผ๐˜‚โ€™๐—ฟ๐—ฒ ๐˜๐—ฟ๐˜†๐—ถ๐—ป๐—ด ๐˜๐—ผ ๐—ฑ๐—ฒ๐˜๐—ฒ๐—ฐ๐˜.

The most common โ€“ and often disastrous โ€“ mistake. Without the Effect size you wonโ€™t know if the Sample Size is sufficient. And without that, the study will most likely be underpowered and/or fail to detect significant factors.


โ€ฆAll this and we havenโ€™t run the experiment yet! Stay tuned for more...

3 views

BLOG

New posts added regularly. To be among the first to know, subscribe.

bottom of page